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Long-time dynamics of modulated waves in a nonlinear discreteLC transmission line

David Yemélé,* Patrick Marquie´, and Jean Marie Bilbault
LE2I, FRE CNRS 2309, Universite´ de Bourgogne, Boıˆte Postale 47870, 21078 Dijon Cedex, France

~Received 29 April 2002; published 14 July 2003!

The long-time dynamics of modulated waves in a nonlinearLC transmission line is investigated. Consider-
ing the higher-order nonlinear Schro¨dinger equation, we define analytically the conditions leading to the
instability of modulated waves. We show that two kinds of instabilities may develop in the network depending
on the frequency range of the chosen carrier wave and on the magnitude of its initial amplitude, which is
confirmed by our numerical simulations. The nonreproducibility of numerical experiments on modulated waves
is also considered.
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I. INTRODUCTION

In the past few decades, wave propagation in disper
nonlinear media has received a great amount of attent
This attention is motivated by the capacity of these media
support solitons such as excitations~kinks, pulses, envelope
and dark solitons, etc.! @1,2#. Unlike the other solitons
~kinks!, envelope solitons require practically no activati
energy and can interpolate between extremely nonlin
modes~kinks! and linear modes~linear plane waves!. An
envelope soliton can be viewed as a result of an instab
that leads to a self-induced modulation of the steady s
produced by the interaction between nonlinear and disper
effects. This phenomenon is known as modulational insta
ity ~MI !. More specifically, modulational instability is a phe
nomenon in which a continuous wave propagating in a n
linear medium undergoes, in the presence of weak nois
any other small perturbation, a modulation of its amplitu
or phase, which can ultimately end up in breaking up
wave into small packets. This phenomenon has been stu
in diverse fields such as fluid dynamics@3#, nonlinear optics
@4,5#, plasma physics@6,7#, and nonlinear electrical transmis
sion lines~NLTLs! @8–11#. Indeed, NLTLs are convenien
tools to study wave propagation in nonlinear dispersive m
dia. In particular, they provide a useful way to check how
nonlinear excitations behave inside the nonlinear med
and to model the exotic properties of new systems@1,12#.
These are the reasons why since the pioneering works
Hirota and Suzuki@13# and by Nagashima and Amagis
@14#, on electrical lines simulating the Toda lattice@15#, a
growing interest has been devoted to the use of NLTLs
particular, for studying nonlinear modulated wave propa
tion @8–11,16–18#.

The nonlinear Schro¨dinger ~NLS! equation has been
shown to provide an approximate but fairly accurate desc
tion of such modulated waves in nonlinear media for cert
parameter regimes. Indeed, for example, in the field of fl
dynamics, the standard NLS equation gives a good desc
tion of nonlinear deep water waves in the case of sm
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steepness, while it fails when considering large steepnes
the latter case, a significant improvement can be achieve
taking into account higher-order terms in perturbation ana
sis, that is, considering a higher-order NLS~HONLS! equa-
tion @19#. More recently, by means of this HONLS equatio
Ablowitz and co-workers@20,21# have studied the long-time
dynamics of modulational instability of deep water wav
and have obtained the following results:

~i! The standard NLS equation yields satisfactory desc
tion of long-time envelope solitons dynamics for consider
time scales.

~ii ! On the contrary, for modulated periodic Stoke wav
serious nonlinear instabilities and chaos may develop in
medium such that the standard NLS equation fails to
scribe, but which can be explained by means of the HON
equation.

One might wonder if an intrinsicallydiscrete medium,
such as an electrical transmission line, may exhibit the sa
kind of instabilities or chaos as in the above described c
tinuous medium. The answer of this question is the m
objective of the present work.

The paper is organized as follows. In Sec. II, we pres
the characteristics of the NLTL under consideration. In t
low-amplitude limit, we derive the HONLS equation gover
ing the propagation of slowly modulated waves in the n
work. In Sec. III, considering the HONLS equation, we d
termine the conditions under which a slowly modulat
wave propagating along the NLTL will become unstable to
small perturbation. In Sec. IV, in the frequency range wh
the network may exhibit the propagation of envelope so
tons, we use the time-dependent perturbation method
study quantitatively the dynamics of the single envelope s
ton. Numerical experiments are considered in Sec. V in or
to check the validity of the theoretical predictions and
observe some additional features of modulational instabi
namely, the nonreproducibility of numerical experiments.
nally, in Sec. VI, we give some concluding remarks.

II. MODEL DESCRIPTION AND HIGHER-ORDER
NONLINEAR SCHRÖ DINGER EQUATION

We consider a discrete nonlinear electrical network w
N cells, as illustrated in Fig. 1, each cell containing a line
inductanceL in the series branch and a nonlinear capacito
©2003 The American Physical Society05-1
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YEMÉLÉ, MARQUIÉ, AND BILBAULT PHYSICAL REVIEW E 68, 016605 ~2003!
the shunt branch. DenotingVn(t) as the voltage across th
nth capacitor and using Kirchhoff’s laws, we get the circ
equations

L
d2qn

dt2
5Vn1122Vn1Vn21 , ~2.1!

whereqn is the electrical charge stored in thenth capacitor.
This capacitor consists of a reverse-biased diode with dif
ential capacitanceC (Vb1Vn)5dqn /dVn , which is a non-
linear function of the voltageVn . For low voltages around
the dc bias voltageVb , the dependence ofqn(Vn) can be
approximated by

qn~Vn!'C0 ~Vn2aVn
21bVn

3!, ~2.2!

with C05C(Vb) and where the nonlinear coefficientsa and
b are a50.21 V21 and b50.0197 V22, respectively, for
Vb52 V @1#. By inserting Eq.~2.2! into Eq. ~2.1!, we obtain
the following equations governing wave propagation in
nonlinear network:

d2Vn

dt2
1v0

2~2Vn2Vn112Vn21!5a
d2Vn

2

dt2
2b

d2Vn
3

dt2
,

n51,2,...,N, ~2.3!

with v0
251/LC0 . Linear oscillations in the lattice with an

gular frequencyv and wave numberk are described by the
following linear dispersion law, represented in Fig. 2:

v25vc
2 sin2~k/2!, ~2.4!

wherevc52v0 is the cutoff frequency due to the intrins
discrete character of the lattice.

We now focus our attention on modulated waves with
slowly varying envelope in time and space with regard t
given carrier wave with angular frequencyv5vp and wave
vector k5kp . Then, in order to use the reductive perturb
tion method in the semidiscrete limit@22,23#, we introduce
the slow envelope variablesX5«(n2ngt) and t5«2t,
where« is a small parameter andng5(v0

2/vp)sinkp desig-
nates the group velocity of linear wave packets. Hence,
solution of Eq.~2.3! is assumed to have the following ge
eral form:

Vn~ t !5«~Aeiu1A* e2 iu!1«2f1«2~Be2iu1B* e22iu!,
~2.5!

FIG. 1. Electrical network consisting ofN identical cells. Each
cell contains a linear inductorL in the series branch and a nonline
capacitorC(Vn).
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with u5kpn2vpt and* denotes complex conjugation. Not
that considering higher-order harmonic terms, that is, te
such as exp(63iu),exp(64iu),... is not necessary since a
these harmonics lie above the cutoff frequency of our s
tem. So the physical low-pass filter behavior of the electri
line justifies the ansatz~2.5!. Substituting Eq.~2.5! in Eq.
~2.3! and keeping terms of the order«3 and«4 proportional
to exp(iu), we obtain the following equation forA(X,t):

i
]A

]t
1P

]2A

]X2 1QAuAu25
«ng

vp
S 2

]2A

]X]t
1 i

4

3
P

]3A

]X3

12iQuAu2
]A

]X
12iQA2

]A*

]X D ,

~2.6!

with

P52vp/8, Q5a2vp@~3b/2a2!1~vc /vp!222#.
~2.7!

Furthermore, the dc and second-harmonic termsf(X,t) and
B(X,t), respectively, are related toA(X,t) by

f52a @12~vc /vp!2#uAu2, B5a ~vc /vp!2A2,
~2.8!

which have been obtained by keeping the terms proportio
to «4e0 and «2e2iu, respectively. Relations~2.6!–~2.8! are
not defined for the carrier frequencyvp50; however, since
we are concerned with the modulated wave, the carrier
quency cannot reach this limit.

FIG. 2. Linear dispersion curve of the network: frequencyf
5v/2p (MHz) as a function of the wave vectork ~rad/cell!. Three
domains are specified: domain I where the network may exhibit
predicted by the standard NLS equation; domain II where mo
lated waves are stable; domain III where modulated waves ma
unstable if the amplitude of the input carrier wave exceeds a thr
old value. This kind of instability is predicted by the HONLS equ
tion, and not by standard NLS equation.
5-2
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Equation ~2.6! governs the propagation of the slow
modulated wave in the NLTL. The first two terms on th
right-hand side describe the linear higher-order dispers
while the two last terms describe the nonlinear dispersion
the network. This equation may be viewed, here and her
ter, as a higher-order NLS~HONLS! equation since it re-
duces to the standard NLS equation when« tends to zero,
i.e., when neglecting the right-hand terms. In this limit, it
well known that the resulting NLS equation admits differe
types of soliton solutions depending on the sign of the pr
uct of coefficientsP andQ. Namely, they are as follows.

~1! If PQ.0, the bright-type soliton solution is given b
@24#

A~X,t!5A0 sech@~X2nePt!/Ls#exp@ i ~ne/2!~X2ncPt!#,

~2.9!

wherene andnc are the amplitude and phase velocities of t
soliton, respectively, and satisfy the following relatio
2nenc5@ne

222(Q/P)A0
2#, while Ls5(1/A0)A2P/Q is the

spatial width of the soliton.
~2! When PQ,0, the solution of the NLS equation is

hole soliton@17,24#.
Taking into account the right-hand side of Eq.~2.6!, we

note that the~HONLS! equation~2.6! modeling the nonlinear
modulated wave propagation in the discrete electrical tra
mission line is very similar to that obtained in the wat
wave context@20,21#, that is, considering a continuous m
dium. In the following, it is used to determine the conditio
of instability of the modulated waves in the network.

III. MODULATIONAL INSTABILITY

In this section, we study the conditions under which
uniform wave train propagating along the NLTL modeled
the HONLS equation~2.6! will become unstable to a sma
perturbation. For this purpose, we look for a solution of t
form

A5r~X,t!eig~X,t!. ~3.1!

Substituting this relation into Eq.~2.6! leads to an equation
in which the real and imaginary parts are respectively giv
by

]r

]t
12P

]g

]X

]r

]X
1Pr

]2g

]X2

5
«ng

vp
H 2S ]g

]t

]r

]X
1r

]2g

]X]t
1

]g

]X

]r

]t D1
4P

3 F ]3r

]X3

23r
]g

]X

]2g

]X223S ]g

]XD 2 ]r

]XG16Qr2
]r

]XJ ,
01660
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]g

]t
1PS ]g

]XD 2

2Qr25
P

r

]2r

]X2 1
«ng

vp
H 1

r

]2r

]X]t
2

]g

]X

]g

]t

1
4P

3 F3

r

]g

]X

]2r

]X2 1
3

r

]2g

]X2

]r

]X
1

]3g

]X3

2S ]g

]XD 3G12Qr2
]g

]XJ . ~3.2!

This system of equations has the exact plane wave solu
A5r0eig0(r ), where r0 is a constant amplitude andg0(t)
52Qr0

2t. It is the well-known continuous wave solution o
the NLS equation with a phase or angular frequency depe
ing on the square of the amplitude.

The linear stability of this continuous wave can be inve
tigated by looking for a solution of the form

A5@r01r1~X,t!#ei @g0~t!1g1~X,t!#, ~3.3!

wherer1(X,t) andg1(X,t) are assumed to be small as com
pared to the carrier wave parametersr0 and g0(t), respec-
tively. Substituting Eq.~3.3! in Eq. ~3.2!, and neglecting the
nonlinear terms, leads to the following linear equations
r1 andg1 :

]r1

]t
1Pr0

]2g1

]X2 5
«ng

vp
H 5Qr0

2 ]r1

]X
2r0

]2g1

]X]t
1

4P

3

]3r1

]X3 J ,

]g1

]t
22Qr0r15

P

r0

]2r1

]X2 1
«ng

vp
H 1

r0

]2r1

]X]t
1Qr0

2 ]g1

]X

1
4P

3

]3g1

]X3 J . ~3.4!

Assuming for the perturbation a modulation ansatz w
wave numberK and angular frequencyV, namely, r1

5aei (Vt2KX)1c.c. andg15bei (Vr 2KX)1c.c., wherea andb
are constants and c.c. stands for complex conjugate, lea
the perturbation dispersion law,

V2~12z2K2!22zK~ 1
3 PK222Qr0

2!V2$P2K4

22PQr0
2K22z2K2~ 16

9 P2K428PQr0
2K215Q2r0

4!%

50, ~3.5!

where z5«ng /vp . The modulational instability phenom
enon occurs when the angular frequencyV of the perturba-
tion possesses a nonzero imaginary part leading to an e
nential growth of the amplitude versus time. This occu
when the discriminant of the homogeneous algebraic eq
tion has a negative value, that is,

D5
16

9
z4P2K2~K61c2K41c1K21c0!,0, ~3.6!

with d5z2(Q/P)r0
2, c052(9/16z6)d(d12), c1

5(9/16z4)@11(26/3)d15d2#, and c252(3/2z2)(113d).
This sign ofD depends on the sign ofQ/P and on the am-
plitude r0 of the carrier wave, given as follows.
5-3
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YEMÉLÉ, MARQUIÉ, AND BILBAULT PHYSICAL REVIEW E 68, 016605 ~2003!
~i! D is negative forQ/P.0 if the wave numberK is
lower than the critical valueKc1

given by

Kc1

2 5~s11s2!2~c2/3!, ~3.7!

with

s15@r 1~q31r 2!1/2#1/3, s25@r 2~q31r 2!1/2#1/3,

r 5
1

6
~c1c223c0!2

c2
3

27
,

andq5c1/32c2
2/9.

~ii ! D is also negative forQ/P,0 if the carrier wave
amplitude exceeds a threshold

«r0.«r0,th5~v/ng!~22P/Q!1/2 ~3.8!

and if the wave vectorK of the modulation obeys

K2,Kc2
2 5~21/2!~s11s2!2c2/32 i ~)/2!~s12s2!.

~3.9!

Equations~3.7!, and~3.8! and ~3.9! determine the condi-
tions of instability of slowly modulated plane waves prop
gating along the NLTL. It appears from Eq.~3.7! that the
instability occurs when the productPQ is positive and if the
wave vectorK of the modulation is lower thanKc1

. We find
here a result similar to that given by the standard NLS eq
tion, the presence of higher-order terms in Eq.~2.6! implying
a slightly modified value ofKc1

. In fact, note that for«

→0, the HONLS equation corresponds to the standard N
equation, andKc1

reduces to the well-known expressio

Kc1
5r0(2Q/P)1/2. This result is shown in the dispersio

curve~Fig. 2!, where the corresponding domain~domain for
which PQ.0) is labeled by domain I. Another criterion o
instability, absent for the standard NLS equation, is given
Eqs.~3.8! and~3.9!. In this case, instability may occur, whe
PQ,0, if the wave vector of the modulation is lower tha
Kc2

, and if the carrier wave amplitude exceeds the thresh

valueVth52«r0th @see Eqs. 2.5 and~3.1!# depending on the
carrier wave frequency and on the characteristic parame
of the NLTL @a, b, and u05(LC0)21/2] via the nonlinear
coefficientQ in the HONLS equation. In Fig. 3, the thresho
amplitudeVth is plotted versus the carrier wave frequen
f p . Let us point out first thatVth is bounded by the biase
voltageVb52 V of BB112 varicap diodes.

Then, two regions appear corresponding, respectively
stable and unstable propagations of slowly modulated wa
according to their initial amplitude as compared to t
threshold value. For the sake of clarity, these results are
shown in the corresponding regionPQ,0 of the dispersion
curve~Fig. 2!, where the following two domains of stabilit
are then specified: Domain II. corresponds to the case w
there is no instability for carrier wave amplitude less th
Vb , since the threshold valueVth exceeds the biased voltag
and Domain III corresponds to the region where instabi
occurs when the carrier wave amplitude exceeds the thr
old valueVth that is lower than the biased voltageVb .
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It is necessary to point out that our results in the ca
PQ,0 are similar to those obtained by considering oth
discrete systems, namely, thef4 model @25# and another
type of the NLTL@26#. However, a quantitative compariso
of results is not possible since both these models consis
band-pass filters for linear waves, while our model cons
of a low-pass filter. Nevertheless, it should be interesting
use the HONLS equation to establish the criterion of ins
bility of slowly modulated plane waves propagating in the
other systems in order to make a quantitative compariso

IV. EFFECT OF HIGHER-ORDER TERMS
ON THE ENVELOPE SOLITON DYNAMICS

In the preceding section, our analytical calculations
modulational instability conditions in the NLTL modeled b
an HONLS equation have predicted instability forQ/P.0
~domain I in Fig. 2!, that is, as in the NLS case. This crite
rion of instability being related to the existence of envelo
solitons in this region, the higher-order terms@right-hand
side of Eq.~2.6!# can then be viewed as small perturbatio
to the standard NLS equation. Although the influence
small perturbations in the NLS equations is known to aff
the velocity, amplitude, and phase of the envelope solit
and to generate small-amplitude wave packets@27,28#, one
might wonder how the perturbation terms in the HONL
equation~2.6! will quantitativelymodify the envelope soli-
ton parameters existing in domain I of the dispersion cu
~see Fig. 2!.

To proceed with perturbation effects on envelope soli
dynamics, it is more convenient to use dimensionless par
eters:u5(Q/2P)1/2A, T5(2P)t, andx5X, which leads to
the dimensionless form of the HONLS equation

i
]u

]T
1

1

2

]2u

]X2 1uuuu25 i«R@u#, ~4.1a!

where

FIG. 3. Threshold valueVth52«r0th ~V!, as a function of carrier
wave frequency,f p5vp/2p (MHz).
5-4
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R@u#5~ng /vp!F i
]2u

]X]T
1

2

3

]3u

]X3 14uuu2
]u

]X
12u2

]u*

]X G
~4.1b!

stands for the perturbation. Similarly, the dimensionless fo
of the unperturbed NLS soliton is given by@see Eq.~2.9!#

us~z,T!52a sechz exp~ iQ!, ~4.2!

with z52a@X2j(T)#, Q5(m/a)z1d(T), j(T)52mT,
and d(T)52(m21a2)T, where 2m and 2a are the dimen-
sionless soliton velocity in the moving frame at velocityng
and amplitude, respectively. To describe the variations of
envelope soliton parameters~a, m, j, andd!, let us consider
that all these parameters change with time according to
well-known time-dependent perturbation theory@27,28#:

da

dT
5«N@u#, ~4.3!

dm

dT
5«M @u#,

dj

dT
52

1

2a
Im h~x!1«E@u#,
a

is

01660
e

e

dd

dT
52m

dj

dT
1Reh~x!1«D@u#,

with

N@u#5
1

2
ReE

2`

1`

R@us#e
2 iQ sechz dz,

M @u#5
1

2
Im E

2`

1`

R@us#e
2 iQ sechz tanhz dz,

h~x!52~a22m2!24ima, ~4.4!

E@u#5
1

4a2 ReE
2`

1`

R@us#e
2 iQz sechz dz,

D@u#5
1

2a
Im E

2`

1`

R@us#e
2 iQ~12z tanhz!sechz dz.

Replacing Eq.~4.2! in Eq. ~4.1b!, then integrating, yields

da/dT50,

dm/dT50,
dj/dT5
2m1~10«ng/3vp!~3m22a2!132~«2ng

2/3vp
2!m~m22a2!

114~«ng /vp!m14~«2ng
2/vp

2!~m22a2!
, ~4.5!

dd/dT5
2~m21a2!1~16m«ng/3vp!~a212m2!132~«2ng

2/3vp
2!~m41a2m22a4!

114~«ng /vp!m14~«2ng
2/vp

2!~m22a2!
,

from which it appears that the amplitude of the soliton is not modified (da/dT50), while the soliton velocitydj/dT
undergoes a constant deviation becausedm/dT50. From Eq.~4.5!, we can show that the nonlinear frequency of the solitonV«

defined by

V«52m
dj

dT
2

dd

dT
~4.6!

also undergoes a constant modification, whose explicit expression is

V«5

2~m22a2!1
4

3

«ng

vp
m~7m229a2!1

32

3 S «ng

vp
D 2

~m423a2m212a4!

114
«ng

vp
m14S «ng

vp
D 2

~m22a2!

. ~4.7!
the
.

of
ical
ly
For example, in the case of an electrical soliton propag
ing at the group velocityng in the network~which corre-
sponds tom50), the deviation of the nonlinear frequency
given by

DV5V«2V«50

5~80P/3!~ng /vp!2~«a!4/@124~«ng /vp!2a2#. ~4.8!
t-The consequence of this deviation will be observed in
numerical experiments presented in the following section

V. NUMERICAL EXPERIMENTS

In this section, we present the details and the results
numerical experiments performed on the nonlinear electr
network. We first consider the experiments with slow
5-5
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FIG. 4. Signal voltage ~in
volts! as a function of normalized
time ~arbitrary units! ~a! and cor-
responding power spectrum~in
volts! ~b!, showing MI of a slowly
modulated plane wave, at fre
quency f p51180 kHz belonging
to domain I of the dispersion
curve, predicted by the NLS and
HONLS equations. The initial am-
plitude of the wave is Vm

50.5 V, while the modulation
rate and the modulation frequenc
are m50.01 and f m58.75 kHz,
respectively.
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modulated plane waves and then experiments on enve
soliton propagation are presented.

A. Modulated plane waves

According to the analytical calculations presented in S
III, the stability of modulated plane waves is determined
the sign of the parametersP andQ, whereP is the dispersion
coefficient andQ is the nonlinear coefficient of the standa
NLS equation. A slowly modulated plane wave may beco
unstable whenPQ.0 and also whenPQ,0, but in the
latter case, the plane wave amplitude has to exceed the
cal valueVth52«r0th ~see Fig. 3!. However, this stability
analysis has been obtained through a linear equation~3.4!
which is only an approximative description of the initi
equation ~3.2!. Therefore, the linear stability analysis ca
only detect the onset of instability, but it does not tell
anything about the behavior of the system when the insta
ity takes place.

In order to check the validity of the analytical predictio
of MI presented in Sec. III, we perform numerical simul
tions of the exact equation~2.3! governing wave propagatio
in the NLTL. The parameters of the line are chosen to
L15220mH, C(Vb52 V)5C05320 pF which implies that
the cutoff frequencyf c5vc/2p51200 kHz. The fourth or-
der Runge-Kutta scheme is used with normalized integra
time stepDt5531023 corresponding to the sampling pe
riod Ts51.3331029 s. Similarly, the number of cells is
variable in order to avoid wave reflection at the end of
line and, also, to run the experiments with sufficiently lar
time ~for example,t54 ms).
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At the input of the line, we apply a slowly modulate
signal

V0~ t !5Vm~11m cosVt !cosvpt, ~5.1!

where Vm is the amplitude of the unperturbed plane wa
~carrier wave! with angular frequencyvp52p f p . In addi-
tion, m andV52p f m are the rate and the angular frequen
of the modulation, respectively. We have investigated
stability over the whole carrier wave frequency rangef p
< f c , and for different modulation frequencies 0.1 kHz< f m
<10 kHz.

For f pP] f cr51040 kHz,f c], that is, in domain I of the
dispersion curve, wherePQ.0, instabilities have been de
tected, as predicted in Sec. III. The above mentioned in
bility leads to a self-modulation of the wave as represen
in Fig. 4. In this figure, the signal voltage at different cells
represented in Fig. 4~a!, while the corresponding Fourie
spectra are represented in Fig. 4~b!. The parameters of the
input signal areVm50.5 V, f p51180 kHz, f m58.75 kHz,
andm51%. As time goes on and as the wave travels alo
the electrical network, the modulation increases and the c
tinuous wave breaks into a periodic pulse train with amp
tude larger than the initial amplitude of the carrier wave. T
wave spectrum shows a growth of the modulation~with
spectral componentsf 165 f p6 f m) and the generation o
other frequenciesf 265 f p62 f m which may be interpreted
by the existence of phase modulation~PM! resulting of a
conversion AM~amplitude modulation!-PM @29#. Note that
the second harmonic generated by the network is not re
sented in this figure since its amplitude is very small as co
5-6
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FIG. 5. Signal voltage ~in
volts! as a function of normalized
time ~arbitrary units! ~a! and cor-
responding power spectrum~in
volts! ~b!, showing MI of a slowly
modulated plane wave, at fre
quencyf p5400 Khz belonging to
domain III of the dispersion curve
predicted only by HONLS equa
tion. The initial amplitude of the
wave is Vm50.7 V.Vth50.5 V,
while the modulation rate and th
modulation frequency are m
50.01 andf m58.75 kHz, respec-
tively.
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pared to the amplitude of the fundamental. The existe
conditions of this kind of instability are adequately describ
by the standard NLS equation.

In domain II of the dispersion curve, the numerical sim
lations have confirmed the stability of propagating mod
lated plane waves for the allowed values of the initial sig
voltage amplitude~less than 2V!.

Next, for f p< f c/2 corresponding to domain III of the dis
persion curve, instabilities develop for some values of
plane wave amplitude exceeding a certain threshold va
defined by Eq.~3.8!. For example, forf p5400 kHz, f m
510 kHz, andVm50.7 V.Vth50.5 V, Fig. 5~a! shows the
voltage signal versus time for different cells. Here, unlike
instabilities observed in domain I from which a pulse train
generated, this kind of instability leads to an incoher
wave. The number of created frequency components
creases as one can easily observe in the Fourier spec
@Fig. 5~b!#, and the electrical network reaches a chaoticl
state. The origin of this kind of instability may be attribute
to the important rate of a generated second harmonic as c
pared to the fundamental term with frequencyf p belonging
to domain III, contrary to the case where frequencyf p is
chosen in domain I. Note that this interpretation is in acc
dance with the analytical expression of the second-harm
term B @Eq. ~2.8!#, which is more important for low frequen
cies than for higher frequencies. Therefore, the nonlinear
efficient Q becomes more important in domain III, inducin
the generation of multiple spectral components. Finally,
mention that the existence of this kind of MI in domain I
can only be predicted by taking into account the presenc
the higher-order terms in the HONLS equation~3.6!.

This incoherent evolution of modulated plane waves c
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also be evidenced from the nonreproducibility of expe
ments devoted to their propagation in the nonlinear mediu
as observed by Ablowitzet al. @21# in the context of fluid
dynamics, that is, considering modulated periodic Sto
waves in deep water. For two different experiments with i
tial identical signals generated by the wave maker, the res
ing temporal evolutions of the surface displacement a
given position in the tank are graphed against each othe
produce a ‘‘phase plane’’ plot indicating the level of repr
ducibility. In particular, if the two experiments can be co
sidered to be reproducible near the wave maker, which
responds to a 45° line in the phase plane, on the contra
complex graph is obtained for more distant positions in
tank. This complex graph traduces the nonreproducibility
both experiments and modulated periodic Stokes wav
which is attributed to the development of a phase shift
tween the waves of the two experiments, this unavoida
phase shift being a function of time. Here, as we consi
modulated plane waves in an NLTL, this phase shift is
placed by the existence of a small level of noise presen
each cell. Then, in our numerical experiments, a zero m
Gaussian noise with standard deviations5531023 is
added in each cell as an additional initial condition. In t
phase plane plots, the evolution of the voltageVn

(1)(t) is
graphed against the evolution of the voltageVn

(2)(t),
Vn

(1)(t), andVn
(2)(t) being the temporal voltages measured

the same celln, and obtained using the same input sign
V0(t) for two different experiments. For these experimen
we distinguish three cases corresponding to stability dom
of the dispersion curve labeled by domains I, II, and III. F
all domains, the phase plane plot is a 45° line for the ce
5-7
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near the input cell, and spreads when the wave propag
along the network, i.e., for more distant cells. In this ca
the two experiments diverge from each other, indicating t
the experiments are nonreproducible. Furthermore, the
ometry of the graph traduces the dynamics of nonlin
modulated waves, behaving from pseudocoherent to cha
clike state, depending on the choice of the carrier freque
f p . Indeed, forf p51000 kHz chosen in domain II, where n
MI was predicted, the phase plane plot at cell 200~repre-
sented in Fig. 6! shows a quite coherent structure materi
izing the stability of the waves. Next, the plot obtained f
f p51150 kHz in domain I where MI exists at cell 1600 e
hibits a noncoherent structure~see Fig. 7!. Finally, the com-
pletely chaoticlike state graph obtained in domain III~see
Fig. 8!, with f p5400 kHz, traduces the particular instabili
of modulated waves observed in this frequency range
previously described. Furthermore, a quasirecurrence in
bility phenomenon with 50 cells recurrence length is o
served since, as shown in Fig. 8, the phase plane plots re
to cells 100 and 150, and cells 130 and 180, respectively,
very similar. Let us point out that the same 50 cells rec
rence length was also observed when launching a nonm
lated wave with the same frequency in the NLTL, this ph
nomenon being closely connected to the intrinsic discr
character of the medium.

B. Electrical envelope solitons

In this paragraph, the effects of higher-order terms in
HONLS equation will be considered, while studying nume
cally the propagation of the N-bound envelope solitons t
may exist in domain I of the dispersion curve~Fig. 2!. As an
initial condition for the numerical experiment, we consid
the input signal

V0~ t !5NsVm sech~ngt/Ls!cos~vpt !, ~5.2!

FIG. 6. Phase plane plotVn
(2)(t) vs Vn

(1)(t) ~in volts! for a
slowly modulated wave with parameters: amplitudeVm50.5 V,
carrier wave frequencyf p51000 kHz belonging to domain II of the
dispersion curve. Frequency modulationf m510 kHz and modula-
tion ratem50.01.
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whereLs5(2/Vm)A2P/Q andNs are the soliton width and
the number of bound solitons, respectively. We chose a
specific caseNs53 and a carrier wave frequency belongin
to domain I,f p51150 Khz, which corresponds to the grou
velocity ng51073 cells/ms. In addition, the soliton ampl
tudeVm50.35 V impliesLs519 cells.

As presented in Fig. 9, the fission of the initial thre
bound solitons is observed at cells 0, 2000, 4000, and 80
respectively, which justifies the description of the modula
wave dynamics in the NLTL by the HONLS equation~2.6!.
This fission, which is attributed to the higher-order terms
HONLS equation, generates three solitons whose amplitu
5Vm , 3Vm , andVm exactly correspond to the predicted on
from inverse scattering calculations~see Ref.@24#, and ref-
erences therein!.

To understand these experiment results, one might c
struct the two first lowest quantities of the conservation l
of the NLS equation, that is,C15*2`

1`uuu2dX and C2

5*2`
1`

„u* (]u/]X)2u(]u* /]X)…dX, whereC1 andC2 may
be viewed as the soliton energy and the soliton moment
respectively, and whereu verifies the dimensionless HONLS
equation~4.1!. Both quantities are conserved if the highe
order terms are neglected. Indeed, the N number of solit
solution of the NLS equation supplied as an input wa
propagate at exactly the same speed and the resulting e
lope shape oscillates due to the phase interference amon
solitons@30#.

However, in the presence of the higher-order ter
present in the HONLS equation~2.6!, the momentumC2 is
modified while the soliton energyC1 is still conserved, that
is, dC1 /dT50 anddC2 /dTÞ0. Because of this modifica
tion ~decreasing!, which depends on soliton parameters@see
relations~4.5! and ~4.7!#, the N-bound solitons propagate
different speeds due to their different amplitudes and hen
they separate~see Fig. 9!. A similar result has been alread

FIG. 7. Phase plane plotVn
(2)(t) vs Vn

(1)(t) ~in volts! for a
slowly modulated wave with parameters: amplitudeVm50.5 V,
carrier wave frequencyf p51150 kHz, belonging to domain I of the
dispersion curve. Frequency modulationf m510 kHz and modula-
tion ratem51%.
5-8
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FIG. 8. Phase plane plots
Vn

(2)(t) vs Vn
(1)(t) ~in volts! for a

slowly modulated wave with pa-
rameters: amplitudeVm50.5 V,
carrier wave frequency f p

5400 kHz belonging to domain
III of the dispersion curve. Fre-
quency modulation f m510 kHz
and modulation ratem51%.
in
re
e

m,
an
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ost
obtained in the context of nonlinear optics@31–33# where
similar higher-order terms to the NLS equation describ
the propagation of pulse soliton in the optical fiber we
derived @30#. Among the three additional terms in th
01660
g
HONLS equation, that is, the linear higher dispersion ter
the nonlinear dispersion term, and the self-induced Ram
effect, the last term that produces the downshift of the n
linear frequency of the soliton was shown to play the m
f
e

r
d
-

t

FIG. 9. Plot of signal voltage
~in volts! as a function of normal-
ized time~arbitrary units! showing
the propagation and the fission o
three-bound solitons of amplitud
3Vm ~with Vm50.35 V) because
of the presence of higher-orde
terms with respect to the standar
NLS equation. The soliton of am
plitude 5Vm is first ejected at cell
2000, while the later are ejected a
cell 8000.
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dominant role@24,34#. However, the Raman effect is mor
manifested since it gives a constant deceleration inducing
increase of the soliton velocity with respect to the propa
tion distance.

Finally, as considered previously in the study devoted
modulated plane waves MI, one might wonder whether
experiments on soliton propagation are reproducible or
Then numerical experiments were run considering for an
tial condition an input signal obeying Eq.~5.2! with Ns51
~single soliton!, and a small level of noise in each cell~see
Sec. V B for the noise parameters!. The phase plane plot
~not presented here! presenting the experimental results sho
a nearly perfect 45° line indicating the reproducibility
experiments on envelope solitons in the NLTL, as obser
by Ablowitz et al. @21# in their experiments in the hydrody
namics tank.

VI. CONCLUSION

In this paper, we have investigated the long-time dyna
ics of modulated waves in a nonlinear discrete electr
transmission line by considering additional higher-ord
terms to the standard NLS equation. First, we have sho
that the resulting HONLS equation allows to predict differe
features concerning the stability of a slowly modulated wa
In the standard NLS domain of the MI corresponding
PQ.0, the perturbations of low-amplitude carrier wav
provide an instability leading ultimately in the breaking up
the wave into envelope solitons. In fact, in this frequen
domain, the additional terms to the NLS equation do
qualitatively modify the results obtained with the standa
NLS equation. More interestingly, and contrary to the N
case, for a negative value of the productPQ, additional terms
are at the origin of the instability of carrier waves against
possible perturbations, provided that their initial amplitude
greater than a particular threshold. These predictions are
firmed by numerical simulations. Furthermore, and contr
to the NLS-type MI, the instability observed forPQ,0 does
not lead to the generation of envelope solitons since a c
oticlike state is reached. Note that it would be now intere
M

E
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ing to characterize this chaoticlike behavior with appropri
tools such as Poincare´ sections, Lyapunaov exponents, etc

Next, we have investigated the effects of higher-ord
terms on the envelope soliton propagation~in their domain of
existence, i.e.,PQ.0) using a perturbative analysis. W
have shown that the higher-order terms have no effect on
amplitude of the soliton, while they modify its nonlinear fre
quency. Consequently, this nonlinear frequency downs
may produce the fission of N-bound solitons propagating
the lattice, as observed in our numerical experiments.

Finally, this study on the dynamics of modulated waves
the NLTL has been completed by results on experiments
the reproducibility devoted to the propagation of both mod
lated plane waves and envelope solitons. Considering
different experiments with the same identical conditions,
phase plane plot obtained with the two results present a
line in the case of envelope solitons, transducing a sta
evolution adequately described by the NLS equation@21#.
On the contrary, numerical experiments on modulated pl
waves are not reproducible since the phase plane
strongly differs from a 45° line, particularly in the doma
where the MI occurs due to higher-order terms to the N
equation. Indeed, the graphs obtained in this case prese
chaoticlike structure. This reproducibility of soliton and irr
producibility of modulated plane wave experiments observ
here in a discrete electrical transmission line bear comp
son with the experimental results obtained by Ablowitzet al.
@21# in the water wave context, that is, considering a co
tinuous medium. This allows us to conclude that the p
nomenon~nonreproducibility! may exist in several physica
systems modeled by an NLS equation at a leading order,
equation being only an approximate equation governing
propagation of modulated waves in nonlinear dispers
media.
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