PHYSICAL REVIEW E 68, 016605 (2003
Long-time dynamics of modulated waves in a nonlinear discreté.C transmission line
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The long-time dynamics of modulated waves in a nonlingatransmission line is investigated. Consider-
ing the higher-order nonlinear Scliinger equation, we define analytically the conditions leading to the
instability of modulated waves. We show that two kinds of instabilities may develop in the network depending
on the frequency range of the chosen carrier wave and on the magnitude of its initial amplitude, which is
confirmed by our numerical simulations. The nonreproducibility of numerical experiments on modulated waves
is also considered.
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[. INTRODUCTION steepness, while it fails when considering large steepness. In
the latter case, a significant improvement can be achieved by
In the past few decades, wave propagation in dispersivéaking into account higher-order terms in perturbation analy-
nonlinear media has received a great amount of attentior§is, that is, considering a higher-order NUSONLS) equa-
This attention is motivated by the capacity of these media tdion [19]. More recently, by means of this HONLS equation,
support solitons such as excitatiofiénks, pulses, envelope, Ablowitz and co-worker$20,21] have studied the long-time
and dark solitons, etc.[1,2]. Unlike the other solitons dynamics of modulational instability of deep water waves
(kinks), envelope solitons require practically no activationand have obtained the following results:
energy and can interpolate between extremely nonlinear (i) The standard NLS equation yields satisfactory descrip-
modes (kinks) and linear modeglinear plane waves An tion of long-time envelope solitons dynamics for considered
envelope soliton can be viewed as a result of an instabilitfime scales.
that leads to a self-induced modulation of the steady state (i) On the contrary, for modulated periodic Stoke waves,
produced by the interaction between nonlinear and dispersiv&erious nonlinear instabilities and chaos may develop in the
effects. This phenomenon is known as modulational instabiimedium such that the standard NLS equation fails to de-
ity (MI). More specifically, modulational instability is a phe- Scribe, but which can be explained by means of the HONLS
nomenon in which a continuous wave propagating in a nonequation.
linear medium undergoes, in the presence of weak noise or One might wonder if an intrinsicallyiscrete medium
any other small perturbation, a modulation of its amplitudesuch as an electrical transmission line, may exhibit the same
or phase, which can ultimately end up in breaking up thekind of instabilities or chaos as in the above described con-
wave into small packets. This phenomenon has been studidiuous medium. The answer of this question is the main
in diverse fields such as fluid dynamik, nonlinear optics ~ objective of the present work.
[4,5], plasma physicEs,7], and nonlinear electrical transmis- ~ The paper is organized as follows. In Sec. II, we present
sion lines(NLTLs) [8—11]. Indeed, NLTLs are convenient the characteristics of the NLTL under consideration. In the
tools to study wave propagation in nonlinear dispersive melow-amplitude limit, we derive the HONLS equation govern-
dia. In particular, they provide a useful way to check how thelng the propagation of slowly modulated waves in the net-
nonlinear excitations behave inside the nonlinear mediuntvork. In Sec. lll, considering the HONLS equation, we de-
and to model the exotic properties of new systdhd2.  termine the conditions under which a slowly modulated
These are the reasons why since the pioneering works byave propagating along the NLTL will become unstable to a
Hirota and Suzuki13] and by Nagashima and Amagishi small perturbation. In Sec. IV, in the frequency range where
[14], on electrical lines simulating the Toda lattigg5], a  the network may exhibit the propagation of envelope soli-
growing interest has been devoted to the use of NLTLs, ifons, we use the time-dependent perturbation method to
particular, for studying nonlinear modulated wave propagastudy quantitatively the dynamics of the single envelope soli-
tion [8—11,16—18& ton. Numerical experiments are considered in Sec. V in order
The nonlinear Schdinger (NLS) equation has been t0 check the validity of the theoretical predictions and to
shown to provide an approximate but fairly accurate descripobserve some additional features of modulational instability,
tion of such modulated waves in nonlinear media for certainamely, the nonreproducibility of numerical experiments. Fi-
parameter regimes. Indeed, for example, in the field of fluicdhally, in Sec. VI, we give some concluding remarks.
dynamics, the standard NLS equation gives a good descrip-

tion of nonlinear deep water waves in the case of small | \\ - DESCRIPTION AND HIGHER-ORDER

NONLINEAR SCHRO DINGER EQUATION

*Permanent address: Partement de Physique, Facuttes Sci- We consider a discrete nonlinear electrical network with
ences, Universitele Dschang, Bee Postale 067 Dschang, Camer- N cells, as illustrated in Fig. 1, each cell containing a linear
oun. Email address: dyemele@yahoo.fr inductancel in the series branch and a nonlinear capacitor in
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FIG. 1. Electrical network consisting & identical cells. Each E 0.3 [ Domain II No MI
cell contains a linear inductdrin the series branch and a nonlinear 5,
capacitorC(V,). S 06 e e ]
=
= . .
) 3 Domain II1 MI, if V, >V, (HONLS )
the shunt branch. Denoting,,(t) as the voltage across the & o4} 4 “
nth capacitor and using Kirchhoff's laws, we get the circuit
equations 02
d’dy 0 . - - - - -
L =V, 11— 2V,+V,_1, (2.2 0 0.5 1 15 2 25 3

dt?
Wave vector k (rad/cell)

whereq,, is the electrical charge stored in théh capacitor. _ _ _

This capacitor consists of a reverse-biased diode with differ- FIG. 2. Linear dispersion curve of the network: frequerfcy

ential capacitanc€ (V,+V,)=dg,/dV,, which is a non- =a)/2_7r (MHz) as a function qf the wave vectéar(rad/cel). Thrge_

linear function of the voltagd/, . For low voltages around domains are specified: domain | where the network may exhibit Ml

. predicted by the standard NLS equation; domain Il where modu-
g]pepr?)iir?”::tsegokl)?ge/b’ the dependence afn(Vy) can be lated waves are stable; domain Il where modulated waves may be

unstable if the amplitude of the input carrier wave exceeds a thresh-
_ 2 3 old value. This kind of instability is predicted by the HONLS equa-
An(Vn)=Co (Vn—aVy+ BVy), (2.2 tion, and not by standard NLS equation.

with Co=C(Vy) and where the nonlinear coefficientsand ;i kon— w,t and+ denotes complex conjugation. Note
B are =021V " and f=0.0197 V'*, respectively, for ¢ considering higher-order harmonic terms, that is, terms
Vp=2V [1.]' By inserting Eq.(2.2_) into Eq.(2.1), we Pbt"’?'n such as expf3if),exp(*4ié),... is not necessary since all
the following equations governing wave propagation in they,ese harmonics lie above the cutoff frequency of our sys-

nonlinear network: tem. So the physical low-pass filter behavior of the electrical
5 o0 12 2013 line justifies the ansatf2.5. Substituting Eq.(2.5 in Eq.
dVy + @22V =Vo =V )= a d°vy  d7Vq (2.3 and keeping terms of the ordef ande* proportional
dt? ovefn Fnel Tn-l dt? dt? to exp{#6), we obtain the following equation fok(X,7):
n=12,..N, (2.3 IA A evg[ PA 4 A

— 4 P—s+ 2_ 4 =P —
|57 TP oz TQAIA wp |\ IXaT 3P

with w3=1/LC,. Linear oscillations in the lattice with an-

gular frequencyw and wave numbek are described by the +2iQ|A|2a—A+2iQA2 IA*
following linear dispersion law, represented in Fig. 2: X X
. (2.6
w?=w? siré(k/2), (2.4)
) . with
where w.=2wy is the cutoff frequency due to the intrinsic
discrete character of the lattice. P=—w,/8, Q=d?w/[(3B/2a%) + (wclwy)?—2]
. . p!Os P c/®p y
We now focus our attention on modulated waves with a 2.7

slowly varying envelope in time and space with regard to a

given carrier wave with angular frequenay=w, and wave  Furthermore, the dc and second-harmonic te#tX%, 7) and
vectork=k,. Then, in order to use the reductive perturba-B(X, 7), respectively, are related #(X,7) by

tion method in the semidiscrete linfi22,23, we introduce

the slow envelope variableX=g(n—v4t) and r=¢t, d=2a [1_(wc/wp)2]|A|21 B=a (wc/wp)ZAZ,

wheree is a small parameter ang,= (wg/ wp)sink, desig- (2.8
nates the group velocity of linear wave packets. Hence, the

solution of Eq.(2.39) is assumed to have the following gen- which have been obtained by keeping the terms proportional

eral form: to £%e® and ¢%e?'?, respectively. Relation§2.6)—(2.8) are
‘ ' ' . not defined for the carrier frequenay,=0; however, since
Vo(t)=e(Ae/+A*e ) +e2¢p+2(Be? '+ B*e 27, we are concerned with the modulated wave, the carrier fre-

(2.5  quency cannot reach this limit.
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Equation (2.6) governs the propagation of the slowly g

modulated wave in the NLTL. The first two terms on the 5+P
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(&g)z ) P&2p+8vg|1 %p
—Qp?=— —y + —2

. . . . . . . axX oXdr 9X 9
right-hand side describe the linear higher-order dispersion, P @p 1P T T

while the two last terms describe the nonlinear dispersion of 4P[3 99 d°p 3 d°g dp g
the network. This equation may be viewed, here and hereaf- Tl ax o e ax T ax@
ter, as a higher-order NLEHONLS) equation since it re-

duces to the standard NLS equation whetends to zero, ag\3 , 99

i.e., when neglecting the right-hand terms. In this limit, it is “lax +2Qp aX|[: 3.2

well known that the resulting NLS equation admits different

types of soliton solutions depending on the sign of the prodThis system of equations has the exact plane wave solution
uct of coefficients® andQ. Namely, they are as follows.  A=pye'9%("), wherep, is a constant amplitude angh(7)

(1) If PQ>0, the bright-type soliton solution is given by =2Qpé7‘. It is the well-known continuous wave solution of
[24] the NLS equation with a phase or angular frequency depend-
ing on the square of the amplitude.
The linear stability of this continuous wave can be inves-

A(X,7)=Agseci(X—v.P7)/Llexd i(ve/2)(X—v:P7)], tigated by looking for a solution of the form

2.9 .
29 A=[po+ pa(X,7)JelO0 ) 0Xn] (33

wherev, and v, are the amplitude and phase velocities of theWherep1(X, 7) andgy (X, 7) are assumed to be small as com-

soliton, respectively, and satisfy the following relation Paréd to the carrier wave parametpgsand go(7), respec-

T2 i _ ; tively. Substituting Eq(3.3) in Eg. (3.2), and neglecting the
2veve=[v2—2(QIP)AZ], while Ls=(1/A,)\2P/Q is the _ 71 &) .
spatial width of the soliton. nonlinear terms, leads to the following linear equations for

(2) When PQ<0, the solution of the NLS equation is a P1 andg, :
hole soliton[17,24]. P 52 P pr: 4p &3
Taking into account the right-hand side of EG.6), we ﬂ+ P I_2% 5Q 27P1 g2 + BANAE ,
- : - ar | POxT T o POaX ~PO%Xar T 3 oX3
note that thdHONLS) equation(2.6) modeling the nonlinear P
modulated wave propagation in the discrete electrical trans- 2 2
o oo I . - 1 P dpy evy| 1 9°p; 90,
mission line is very similar to that obtained in the water ==_ 2Qpop1=— —uz + 2790 - pg_
wave contex{20,21], that is, considering a continuous me- 97 po IX°  wp | po IXIT 28
dium. In the following, it is used to determine the conditions 4P 4%y
of instability of the modulated waves in the network. + =1 3.4

Assuming for the perturbation a modulation ansatz with
wave numberK and angular frequency), namely, p;

In this section, we study the conditions under which a=a€“™ ¥ +c.c. andg;=be® " +c.c., wherea andb
uniform wave train propagating along the NLTL modeled byare constants and c.c. stands for complex conjugate, leads to
the HONLS equatior{2.6) will become unstable to a small the perturbation dispersion law,
perturbation. For this purpose, we look for a solution of the
form

IIIl. MODULATIONAL INSTABILITY

Q2(1-?K?)—2{K(3PK?—2Qpd)Q —{P?K*
—2PQpiK?~ {?K2(FP?K*~8PQpiK?+5Q%py)}
=0, (3.5

o . o . where {=evy/w,. The modulational instability phenom-
Substituting this relation into Eq2.6) leads to an equation enon occurs when the angular frequeieyf the perturba-
in which the real and imaginary parts are respectively giverion possesses a nonzero imaginary part leading to an expo-
by nential growth of the amplitude versus time. This occurs
when the discriminant of the homogeneous algebraic equa-
tion has a negative value, that is,

A=p(X,7)e' 9%, (3.1

ap ag dp 9%g

S-t2P—o S +Pp—2 16

J IR X 70X A= PPKAK + K 4K e <0, (3.6)
_evg ag dp . 8’9 dg dp\ 4AP[&%p
T oy | \aroxX PoXar oXar)T 3 |ax®  with  d=%(QIP)p5,  co=—(91&%)d(d+2), ¢

) ) =(9/16/%)[1+ (26/3)d+5d?], andc,= —(3/2;%)(1+ 3d).
3,99 79_ 4199} 9P 160 29P This sign of A depends on the sign @/P and on the am-
Pax ax2 axX] aX Pax | plitude py of the carrier wave, given as follows.

016605-3



YEMELE, MARQUIE, AND BILBAULT PHYSICAL REVIEW E 68, 016605 (2003

(i) A is negative forQ/P>0 if the wave numbeK is 2.0
lower than the critical valu@(cl given by sl
KZ,=(s1155)— (c2/3), (3.7 o

with
Stable modulated
waves

| Unstable modulated

si=[r+(P+r)Y2B so=[r—(g®+r?¥3¥3 waves

3
1 2
r= g(clcz—sco)— 57"

Threshold voltage V, (V)

andq=c,/3—c2/9.
(i) A is also negative foilQ/P<0 if the carrier wave
amplitude exceeds a threshold 0

0 01 02 03 04 05 06 07 08 09 1.0

epo>epom=(w/ Vg)(_ZP/Q)llz (3.8 Frequency f (MHz)

and if the wave vectoK of the modulation obeys FIG. 3. Threshold valu¥y,=2¢ poy, (V), as a function of carrier

K2<K§2= (—1/2)(S,+Sy) — Col3— 1 (V3I2)(S1—Sy). wave frequencyf = w27 (MHz).

3.9 It is necessary to point out that our results in the case

Equations(3.7), and(3.8) and(3.9) determine the condi- PQ<0 are similar to those obtained by considering other
tions of instability of slowly modulated plane waves propa-discrete systems, namely, thg® model [25] and another
gating along the NLTL. It appears from E¢B.7) that the type of the NLTL[26]. However, a quantitative comparison
instability occurs when the produBQ is positive and if the  of results is not possible since both these models consist of
wave vectorK of the modulation is lower thaKcl- We find  band-pass filters for linear waves, while our model consists
here a result similar to that given by the standard NLS equa®f & low-pass filter. Nevertheless, it should be interesting to
tion, the presence of higher-order terms in Exj) implying ~ US€ the HONLS equation to establish the crlter[on pf insta-
a slightly modified value OKcl- In fact, note that fore bility of slowly modulated plane waves propagating in these

. ther systems in order to make a quantitative comparison.
—0, the HONLS equation corresponds to the standard NLé) y q P

equation, andKCl reduces to the well-known expression
Kc,=po(2Q/P)*2. This result is shown in the dispersion

curve (Fig. 2), where the corresponding domdiiomain for

which PQ>0) is labeled by domain I. Another criterion of In the preceding section, our analytical calculations on
instability, absent for the standard NLS equation, is given bynodulational instability conditions in the NLTL modeled by
Egs.(3.8) and(3.9). In this case, instability may occur, when an HONLS equation have predicted instability QfP>0
PQ<O0, if the wave vector of the modulation is lower than (domain | in Fig. 2, that is, as in the NLS case. This crite-
Ke,, and if the carrier wave amplitude exceeds the thresholdgion of instability being related to the existence of envelope

valueVy,= 2& por [see Egs. 2.5 angB.1)] depending on the s_olitons in this region, the higher—order terrfnight—han(_j

carrier wave frequency and on the characteristic parametefide of EQ.(2.6)] can then be viewed as small perturbations
of the NLTL [, B8, and ug=(LC,) Y3 via the nonlinear to the standarq NL.S equation. AIth_ough. the influence of
coefficientQ in the HONLS equation. In Fig. 3, the threshold small perturbations in the NLS equations is known to affect

amplitudeV,, is plotted versus the carrier wave frequencythe velocity, amplitude, and_phase of the envelope solitons
f,. Let us point out first thaVy, is bounded by the biased and to generate small-amplitude wave packef® 2§, one
voltageV, =2 V of BB112 varicap diodes. might wonder how the perturbation terms in the HONLS

Then, two regions appear corresponding, respectively, t§9uation(2.6) will quantitativelymodify the envelope soli-
stable and unstable propagations of slowly modulated wav n pa_rameters existing in domain | of the dispersion curve
according to their initial amplitude as compared to the(Se€ Fig. 2 _ _ .
threshold value. For the sake of clarity, these results are als To PFOC‘?e.d with perturbgﬂon effects on enyelope soliton
shown in the corresponding regietQ<0 of the dispersion dYnamics, itis more convenient to use dimensionless param-
curve (Fig. 2), where the following two domains of stability eter3:u=(Q_/2lT) Af T=(f2Ph) 7, andx=X, which leads to
are then specified: Domain II. corresponds to the case whef@€ dimensionless form of the HONLS equation
there is no instability for carrier wave amplitude less than

IV. EFFECT OF HIGHER-ORDER TERMS
ON THE ENVELOPE SOLITON DYNAMICS

- - . au 1 4%
Vy, since t_he threshold valuéy, exceeds.the blased.voltag_g, i —+ = —+ulul2=ieR[u], (4.13
and Domain Il corresponds to the region where instability aT 29X
occurs when the carrier wave amplitude exceeds the thresh-
old valueVy, that is lower than the biased voltayg . where
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—— ~ Ju +2 a3u+4 Zau+2 , u* d5_2 dé Reh 5
[u]l=(vq wp)lm 3¢ |U|5—X U= g7 2MgT T Re (x)+eD[u],
(4.1b

with

stands for the perturbation. Similarly, the dimensionless form

of the unperturbed NLS soliton is given lyee Eq.(2.9 1 +oo ,
unpertu iton is given byee Eq(2.9)] N[u]=§Ref R[uJe~'® sechz dz
Us(z,T)=2asechzexpi®), (4.2 o
with z=2a[X—&(T)], ©=(p/a)z+8(T), &(T)=24T, _1 f - “i
and 8(T)=2(u?+a%)T, where 2. and 2a are the dimen- MLu]=3Im - Rlusle ™ secfetanhz dz
sionless soliton velocity in the moving frame at velocity
and amplitude, respectively. To describe the variations of the h(x)=2(a?— u?) —4iua, 4.9
envelope soliton parametefa, u, & and ), let us consider
that all these parameters change with time according to the 1 +oo iy
well-known time-dependent perturbation the?y,28: E[u]= QRGLOG Rlusle”""zsectz dz
da
—=¢N[u], (4.3 1 +oo _io
dT D[u]=£ImJ’ Rlugle'?(1—ztanhz)sechz dz
d
ﬁst[u], Replacing Eq(4.2) in Eq. (4.1b), then integrating, yields
da/dT=0,
d¢ = ! Imh E
at~ 22 mhO0+eELul, du/dT=0,
|
2+ (108 vy/3w,) (32— a?) + 322121302 u( u?—a?)
dgldT= g__F gp (4.5
1+4(8vg/wp)ﬂ+4(82vélw‘2})(u2—a2) ' '
2(uP+a®) + (16uevg/3wy)(a%+2u?) +32(£2v2/3w2) (u*+a’u’—a*)
ds/dT= g__F g P

l+4(8Vg/wp)/,L+4(82V§/wf,)(,u2—az)

from which it appears that the amplitude of the soliton is not modified/d T=0), while the soliton velocityd&/dT
undergoes a constant deviation becatygéd T=0. From Eq.(4.5), we can show that the nonlinear frequency of the solidgn
defined by

0,=2 d¢_d 4.6
T2 GTT T (4.6)
also undergoes a constant modification, whose explicit expression is
4 gv 32(ev,\?
2(u?—ad)+ = —2u(Tu?—9a?) + — | —2| (u*—3au?+2a%
3 w, 3| wp
QEZ 2 . (47)
144229 14| 228 (u2-a2)
Wp Wp

For example, in the case of an electrical soliton propagatThe consequence of this deviation will be observed in the
ing at the group velocityy, in the network(which corre-  numerical experiments presented in the following section.
sponds tou=0), the deviation of the nonlinear frequency is

given by V. NUMERICAL EXPERIMENTS

AQ=0,-Q,_, In this section, we present the details and the results of
o numerical experiments performed on the nonlinear electrical
=(80P/3)(vy/wp)A(ea)*[1-4(evglwp)?a®]. (4.8)  network. We first consider the experiments with slowly
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(a) (b
" [ell 0: input 001 cell 0: input
0.4
0 0.2 L
0
! 0 1 2 3 1160 1170 1180 1190 1200
1 e 0.4 FIG. 4. Signal voltage (in
cell 400 02 cell 400 volts) as a function of normalized
0 ' JM time (arbitrary unit$ (a) and cor-
4 = 0 responding power spectruniin
= 0 1 2 3 § 1160 1170 1180 1190 1200 volts) (b), showing Ml of a slowly
= 1 11500 0 g 04 cell 500 modulated plane wave, at fre-
Z o ce = 02 quency f,=1180 kHz belonging
>= Z to domain | of the dispersion
A wnn 0 curve, predicted by the NLS and
20 1 2 3 1160 1170 1180 1190 1200 HONLS equations. The initial am-
x {0 0.3 plitude of the wave is V,
. cell 650 02} cell 650 =0.5V, while the modulation
0.1 W rate and the modulation frequency
2 0 are m=0.01 andf,,=8.75kHz,
0 1 2 3 1160 1170 1180 1190 1200 respective|y_
2 ' J x10 03
cell 700 02 cell 700
-2 0
0 1 2 3 1160 1170 1180 1190 1200
Normalized time t (arb. units) Frequency (kHz)

modulated plane waves and then experiments on envelope At the input of the line, we apply a slowly modulated
soliton propagation are presented. signal

Vo(t) =V(1+mcosQt)cosw,t, (5.0
A. Modulated plane waves

According to the analytical calculations presented in SecwhereV, is the amplitude of the unperturbed plane wave
I, the stability of modulated plane waves is determined by(carrier wave with angular frequencyo,=2=f,. In addi-
the sign of the parametePsandQ, whereP is the dispersion tion, mandQ =2=f,, are the rate and the angular frequency
coefficient andQ is the nonlinear coefficient of the standard of the modulation, respectively. We have investigated the
NLS equation. A slowly modulated plane wave may becomestability over the whole carrier wave frequency ranige
unstable whenPQ>0 and also wherPQ<0, but in the <f_, and for different modulation frequencies 0.1 klfz,,
latter case, the plane wave amplitude has to exceed the criti€ 10 kHz.
cal valueVy,=2epon (see Fig. 3 However, this stability For f,e]f,=1040 kHzf ], that is, in domain | of the
analysis has been obtained through a linear equdBo$ dispersion curve, wherB Q> 0, instabilities have been de-
which is only an approximative description of the initial tected, as predicted in Sec. Ill. The above mentioned insta-
equation(3.2). Therefore, the linear stability analysis can bility leads to a self-modulation of the wave as represented
only detect the onset of instability, but it does not tell usin Fig. 4. In this figure, the signal voltage at different cells is
anything about the behavior of the system when the instabilrepresented in Fig. (4), while the corresponding Fourier

ity takes place. spectra are represented in Figb¥ The parameters of the
In order to check the validity of the analytical predictions input signal areV,,=0.5V, f,=1180 kHz, f,,=8.75 kHz,
of MI presented in Sec. lll, we perform numerical simula- andm=1%. As time goes on and as the wave travels along

tions of the exact equatiof2.3) governing wave propagation the electrical network, the modulation increases and the con-
in the NLTL. The parameters of the line are chosen to beinuous wave breaks into a periodic pulse train with ampli-
L;=220uH, C(V,=2 V)=Cy=320 pF which implies that tude larger than the initial amplitude of the carrier wave. The
the cutoff frequencyf = w /2m=1200 kHz. The fourth or- wave spectrum shows a growth of the modulati@vith

der Runge-Kutta scheme is used with normalized integratiospectral components$,.=f,*=f;) and the generation of
time stepAt=5x10"2 corresponding to the sampling pe- other frequencies,. =f,+2 f,, which may be interpreted
riod T,=1.33<10 °s. Similarly, the number of cells is by the existence of phase modulati¢®M) resulting of a
variable in order to avoid wave reflection at the end of theconversion AM(amplitude modulationPM [29]. Note that

line and, also, to run the experiments with sufficiently largethe second harmonic generated by the network is not repre-
time (for examplet=4 ms). sented in this figure since its amplitude is very small as com-
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pared to the amplitude of the fundamental. The existencalso be evidenced from the nonreproducibility of experi-
conditions of this kind of instability are adequately describedments devoted to their propagation in the nonlinear medium,
by the standard NLS equation. as observed by Ablowitet al. [21] in the context of fluid

In domain Il of the dispersion curve, the numerical simu-dynamics, that is, considering modulated periodic Stokes
lations have confirmed the stability of propagating modu-waves in deep water. For two different experiments with ini-
lated plane waves for the allowed values of the initial signakja| identical signals generated by the wave maker, the result-
voltage amplitudgless than 2V. . _ing temporal evolutions of the surface displacement at a

Next, for f,=fc/2 corresponding to domain Ill of the dis- given position in the tank are graphed against each other to
persion curve, instabilities develop for some values of th%roduce a “phase plane” plot indicating the level of repro-
plane wave amplitude exceeding a certain threshold valug,cipjiity. In particular, if the two experiments can be con-
defined by Eq.(3.8). For example, forf,=400 kHz, f,, sidered to be reproducible near the wave maker, which cor-

=10 kHz, andV,,=0.7 V>V;,=0.5V, Fig. 5a) shows the o ina i
voltage signal versus time for different cells. Here, unlike theresponds t0 2 457 line in the phase plane, on the contrary, a

. e . . . . ~.“complex graph is obtained for more distant positions in the
instabilities observed in domain | from which a pulse train is . I
tank. This complex graph traduces the nonreproducibility of

generated, this kind of instability leads to an incoherentb th iments and modulated periodic Stok
wave. The number of created frequency components in?Oth experments -a odulated periodic SIokes waves,

creases as one can easily observe in the Fourier spectruWh'Ch is attributed to the development of a phase Sh',ﬁ be-
[Fig. 5(b)], and the electrical network reaches a chaoticliketeen the waves of the two experiments, this unavoidable
state. The origin of this kind of instability may be attributed Phase shift being a function of time. Here, as we consider
to the important rate of a generated second harmonic as corffiodulated plane waves in an NLTL, this phase shift is re-
pared to the fundamental term with frequerfgybelonging placed by the existence of a :_small Ievell of noise present in
to domain Ill, contrary to the case where frequerfgyis each cell. Then, in our numerical experiments, a Z€r0 mean
chosen in domain I. Note that this interpretation is in accor->aussian noise with standard deviatien=5x10"" is
dance with the analytical expression of the second-harmoni@dded in each cell as an additional initial condm)on. In the
term B[Eq. (2.8)], which is more important for low frequen- Phase plane plots, the evolution of the voltaggh(t) is
cies than for higher frequencies. Therefore, the nonlinear cadraphed against the evolution of the voltagé?(t),
efficient Q becomes more important in domain 11l inducing V{M(t), andV{?)(t) being the temporal voltages measured at
the generation of multiple spectral components. Finally, wehe same celh, and obtained using the same input signal
mention that the existence of this kind of Ml in domain Il Vy(t) for two different experiments. For these experiments,
can only be predicted by taking into account the presence ofve distinguish three cases corresponding to stability domains
the higher-order terms in the HONLS equati(@®6). of the dispersion curve labeled by domains I, I, and Ill. For
This incoherent evolution of modulated plane waves carall domains, the phase plane plot is a 45° line for the cells
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FIG. 6. Phase plane plo¥;”(t) vs V;”’(t) (in volts) for a FIG. 7. Phase plane plot@(t) vs V() (in volts) for a

slowly modulated wave with parameters: amplitudg=0.5V,
carrier wave frequencfj, = 1000 kHz belonging to domain Il of the
dispersion curve. Frequency modulatibp=10 kHz and modula-
tion ratem=0.01.

slowly modulated wave with parameters: amplitudg=0.5V,
carrier wave frequenclj,= 1150 kHz, belonging to domain | of the
dispersion curve. Frequency modulatibp=10 kHz and modula-
tion ratem=1%.

near the input cell, _and spreads vv_hen the wave pr_opagat%ereLS:(ZNm) 2P/Q and N, are the soliton width and
along the netyvork, e, for more distant ceIIs._ In. thrr_s Cas€ia number of bound solitons, respectively. We chose as a
the two experiments diverge from each other, indicating tha&pecific caseN.=3 and a carrier wave frequency belonging

the experiments are nonreproducible. Furthermore, th'e 985 domain I,f,= 1150 Khz, which corresponds to the group
ometry of the graph traduces the dynamics of nonllnea(/elocity vg=1073 cells/ms. In addition, the soliton ampli-
modulated waves, behaving from pseudocoherent to chaotj; yo\/," 35y impliesL.= 19 cells

m " S "

clike state, depending on the choice of the carrier frequency As presented in Fig. 9, the fission of the initial three

fp. Indeed, fqrfp:1000 KHz chosen in domain Il, where no bound solitons is observed at cells 0, 2000, 4000, and 8000,
Mi Was_pre_dlcted, the phas_e plane plot at cell Zﬁ&)re-_ respectively, which justifies the description of the modulated
_se_znted in Flg._ _)3$hows a quite coherent structure njaterlal-Wave dynamics in the NLTL by the HONLS equatié2.6).

izing the stabr!rty of th? waves. Next, rhe plot obtained forThis fission, which is attributed to the higher-order terms in
fp=1150 kHz in domain | where Ml exists at cell 1600 ex- HONLS equation, generates three solitons whose amplitudes

hibits a noncgh_erent structu(see Fig_. J. Fi_nally, th_e com- 5V, 3V, andV,, exactly correspond to the predicted one,
pletely chaoticlike state graph obtained in domain (Hee from inverse scattering calculatiotisee Ref[24], and ref-
Fig. 8), with f,=400 kHz, traduces the particular instability grences therejn '

of m_odulated waves observed in this freqyency range and 14 ynderstand these experiment results, one might con-
Erl_etvmur;sly descnbed._tl;urStgermli)re, a quaswetl:urretr;]c_e 'nf)t@truct the two first lowest quantities of the conservation law
ility phenomenon wi cells recurrence length is ob-c o\ 5 equation, that isC,=J**|u[2dX and C,

served since, as shown in Fig. 8, the phase plane plots related (U (aul 9X) — u(au* 19X))dX, whereC, andC, may
JS - ’ 1 2

lls 1 nd 1 nd cells 1 nd 180, r ively, are ’ —. N )
to cells 100 and 150, and cells 130 and 180, respectively, alfe viewed as the soliton energy and the soliton momentum,

very similar. Let us point out that the same 50 cells recur- : " : )
rence length was also observed when launching a nonmodﬂQSpeCt'Vely’ and where verifies the dimensionless HONLS

lated wave with the same frequency in the NLTL, this phe_equation(4.1). Both quantities are conserved if the higher-

nomenon being closely connected to the intrinsic discret(—?rder. terms are neglected. 'Indeed, the N number of solitons
character of the medium. solution of the NLS equation supplied as an input wave

propagate at exactly the same speed and the resulting enve-

lope shape oscillates due to the phase interference among the
B. Electrical envelope solitons solitons[30].

In this paragraph, the effects of higher-order terms in the However, in the presence of the higher-order terms
HONLS equation will be considered, while studying numeri-Present in the HONLS equatio.6), the momentunc, is
cally the propagation of the N-bound envelope solitons tha_fnodrfred while the soliton energg, is still cons_erved,_t_hat
may exist in domain | of the dispersion cur(@g. 2. As an 1S, dC,/dT=0 anddC,/dT+0. Because of this modifica-
initial condition for the numerical experiment, we considertion (decreasing which depends on soliton parametgsse

the input signal relations(4.5) and(4.7)], the N-bound solitons propagate at
different speeds due to their different amplitudes and hence,
Vo(t) =NgVp, sechivgt/Lg)cog wpt), (5.2  they separatésee Fig. 9. A similar result has been already
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obtained in the context of nonlinear optif31-33 where  HONLS equation, that is, the linear higher dispersion term,
similar higher-order terms to the NLS equation describingthe nonlinear dispersion term, and the self-induced Raman
the propagation of pulse soliton in the optical fiber wereeffect, the last term that produces the downshift of the non-
derived [30]. Among the three additional terms in the linear frequency of the soliton was shown to play the most

3 3
2 n=0 2 n = 2000
_— ~—
- 1 had 1
e’ N’
-] =
> 0 > )
-1 -1
FIG. 9. Plot of signal voltage
2 -2 (in volts) as a function of normal-
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ized time(arbitrary unit$ showing
the propagation and the fission of
three-bound solitons of amplitude
3V, (with V,=0.35V) because
of the presence of higher-order
terms with respect to the standard
NLS equation. The soliton of am-
plitude 5V, is first ejected at cell
2000, while the later are ejected at
cell 8000.
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dominant role[24,34. However, the Raman effect is more ing to characterize this chaoticlike behavior with appropriate
manifested since it gives a constant deceleration inducing thiols such as Poincasections, Lyapunaov exponents, etc.
increase of the soliton velocity with respect to the propaga- Next, we have investigated the effects of higher-order
tion distance. terms on the envelope soliton propagatiomntheir domain of
Finally, as considered previously in the study devoted tcexistence, i.e.PQ>0) using a perturbative analysis. We
modulated plane waves MI, one might wonder whether thénave shown that the higher-order terms have no effect on the
experiments on soliton propagation are reproducible or notamplitude of the soliton, while they modify its nonlinear fre-
Then numerical experiments were run considering for an iniquency. Consequently, this nonlinear frequency downshift
tial condition an input signal obeying E¢5.2) with Ng=1 may produce the fission of N-bound solitons propagating in
(single soliton, and a small level of noise in each céllee the lattice, as observed in our numerical experiments.
Sec. VB for the noise parametgrdhe phase plane plots Finally, this study on the dynamics of modulated waves in
(not presented herg@resenting the experimental results showthe NLTL has been completed by results on experiments of
a nearly perfect 45° line indicating the reproducibility of the reproducibility devoted to the propagation of both modu-
experiments on envelope solitons in the NLTL, as observedated plane waves and envelope solitons. Considering two
by Ablowitz et al. [21] in their experiments in the hydrody- different experiments with the same identical conditions, the
namics tank. phase plane plot obtained with the two results present a 45°
line in the case of envelope solitons, transducing a stable
VI. CONCLUSION evolution adequately described by the NLS equafi2m].
. ) . . On the contrary, numerical experiments on modulated plane
In this paper, we have investigated the long-time dynamyaves are not reproducible since the phase plane plot
ics of modulated waves in a nonlinear discrete electricagtrongw differs from a 45° line, particularly in the domain
transmission line by considering add@tional higher-ordenhere the Ml occurs due to higher-order terms to the NLS
terms to the standard NLS equation. First, we have showRqyation. Indeed, the graphs obtained in this case present a
that the resulting HONLS equation allows to predict differentchaoticlike structure. This reproducibility of soliton and irre-
features concerning the stab?lity of a slowly modulated. waveproducibility of modulated plane wave experiments observed
In the standard NLS domain of the MI corresponding topere in a discrete electrical transmission line bear compari-
PQ>0, the perturbations of low-amplitude carrier wavesggn with the experimental results obtained by Abloveitzl.
provide an instability leading ultimately in the breaking up of [21] in the water wave context, that is, considering a con-
the wave into envelope solitons. In fact, in this frequencytinuous medium. This allows us to conclude that the phe-
domain, the additional terms to the NLS equation do notyomenon(nonreproducibility may exist in several physical
qualitatively m0d|fy the I’esul_’[S Obtained with the Standard Systems modeled by an NLS equation at a |eading Order’ this
NLS equation. More interestingly, and contrary to the NLSgquation being only an approximate equation governing the

case, for a negative value of the prodB, additional terms  propagation of modulated waves in nonlinear dispersive
are at the origin of the instability of carrier waves against alljegia.

possible perturbations, provided that their initial amplitude is
greater than a particular threshold. These predictions are con-
firmed by numerical simulations. Furthermore, and contrary
to the NLS-type M, the instability observed fB\Q<0 does

not lead to the generation of envelope solitons since a cha- One of the authors, D.Y. would like to acknowledge The
oticlike state is reached. Note that it would be now interest-Conseil Rgional de Bourgogne for financial support.
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